A 24-element Silicon PIN Diode Detector for High Resolution Radioxenon Measurements using Simultaneous X-ray and Electron Spectroscopy
The measurement of atmospheric radioxenon is an important tool for monitoring nuclear weapons testing. The development of new and improved xenon detection methods supports the monitoring program of the Comprehensive Test Ban Treaty Organization (CTBTO). In the current work we have developed a 24-element Si PIN diode detector to measure both the characteristic X-rays and the high energy mono-energetic conversion electrons emitted by the xenon radioisotopes. The low noise properties and ultra-thin entrance window of the PIN diodes are well suited for resolving the relatively low energy X-ray lines while simultaneously measuring the high energy conversion electrons with high collection efficiency and near-Gaussian peak shapes. The use of coincidence gating between the X-rays and conversion electrons can further improve the detection sensitivity, which we show to rival the current HPGe and scintillator based xenon detection systems that rely mostly on Gamma-ray and Beta/Gamma coincidence detection, respectively. The Si PIN detector arrangement offers others advantages compared to current xenon detection methods, such as compact construction, intrinsically low background, and the lack of any memory effect from previous measurements. We discuss the construction of the detector and present measurements performed with 131mXe, 133Xe, 133m Xe and 135Xe. Finally, we make an estimate of the minimum detectable concentration (MDC) for each isotope and compare with the CTBTO requirements.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...