Development of a Digital Signal Readout System for Large TES Arrays

We are developing a digital signal readout system for arrays of high-resolution gamma and fast-neutron detectors based on superconducting transition edge sensors (TESs). The readout system allows for real time data acquisition and analysis at count rates exceeding 100 Hz for pulses with several ∼ms decay times with minimal loss of energy resolution compared to optimum filtering. This digital signal processing system had originally been developed for gamma-ray analysis with HPGe detectors, and we have modified the hardware and firmware to accommodate the slower TES signals. Parameters of the filtering algorithm have been optimized to maximize either resolution or throughput. Here we present a summary of the digital signal processing hardware and discuss its initial performance.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...