Extending the Operation of a Position-Sensitive Photomultiplier Tube to 1 Million Counts per Second

While position-sensitive photomultiplier tubes (PSPMTs), coupled to fast scintillators, are widely used as photon detectors in applications such as medical imaging systems (PET, gamma camera, etc.), where it is desirable to combine good time resolution with the capability of locating the point of photon interaction, their count rate limitations (of order of tens of thousands of cps) have precluded their use in more demanding applications. Recently, in a neutron imaging application, we found that, by using custom designed fast anode and dynode readout circuits, coupled to a fast digital pulse processing board, we could operate a PSPMT at rates approaching 1 million cps while retaining good position resolution, linearity and time resolution. These developments therefore significantly extend the range of PSPMT application.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...