A Method to Correct Differential Nonlinearities in Subranging Analog-to-digital Converters Used for Digital γ-ray Spectroscopy

The influence on gamma-ray spectra of differential nonlinearities (DNL) in subranging, pipelined analog-to- digital converters (ADCs) used for digital gamma-ray spectroscopy was investigated. The influence of the DNL error on the gamma-ray spectra, depending on the input count-rate and the dynamic range has been investigated systematically. It turned out that the DNL becomes more significant in gamma-ray spectra with larger dynamic range of the spectroscopy system. An event-by-event offline correction algorithm was developed and tested extensively. This correction algorithm works especially well for high dynamic ranges.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...