A Digital Spectrometer Approach to Obtaining Multiple Time-Resolved Gamma-Ray Spectra for Pulsed Spectroscopy
Neutron-induced gamma emission and its detection using a pulsed neutron generator system is a recognized analytical technique for quantitative multi-elemental analysis. Traditional gamma-ray spectrometers used for this type of analysis are normally operated in either coincidence mode by counting prompt gamma-rays from inelastic scattering when the neutron generator is ON, or anti-coincidence mode by counting prompt or delayed gamma-rays from thermal neutron capture or delayed activation when the neutron generator is OFF. We have developed a digital gamma-ray spectrometer for concurrently measuring both the inelastic and capture gamma-rays emitted from a sample when activated by 14 MeV neutrons from a pulsed neutron generator. The spectrometer separates the gamma-ray counts into two independent spectra together with two separate sets of counting statistics based on the external gate level. Occasionally there might be a need for multiple time gates to acquire gamma-ray spectra at different time intervals. For that purpose we are developing a multi-gating system that will allow gamma-ray spectra to be acquired concurrently in real time with up to 16 time slots. These 16 time slots will have adjustable width and time delay that can be arbitrarily allocated within the ON and OFF periods. The conceptual system design and considerations for performing gate signal testing and tracking together with pulse height analysis and bin allocation into spectra in real time will be presented.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...