Position Resolution in a Ge-Strip Detector
We have investigated, both experimentally and theoretically, how to reconstruct in 3D the interaction positions for (gamma) -rays penetrating into a double-sized Ge cross trip detector. We found that when a suitable geometry is used, the 3D-reconstruction problem can be reduced to three 1D ones, which greatly simplifies the task. We report measurements on a 10mm thick detector with 2mm strip pitch, showing that at least 2mm position resolution can easily be achieved perpendicular to the detector plane. While the in- plane resolution is presently limited to the strip pitch we present work on progress in developing algorithms to improve this. This includes in particular the expected effects of the electronics and the interstrip capacitance on the signal shapes. Finally, we present captured waveforms that indicate the possibility of reconstructing more complex events such as Compton scattering.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...