Development of 500 MHz Multi-channel Readout Electronics for Fast Radiation Detectors

We describe the development of readout electronics for fast radiation detectors that digitize signals at a rate of 500 MHz, process the digital data stream to measure pulse heights, bin the result in on-board MCA spectra, and optionally capture waveforms for pulse shape analysis. The electronics are targeted for applications requiring good energy resolution and precise timing, for example lifetime measurements on exotic nuclei, timing measurements with fast scintillators such as LaBr3 or BaF2, or pulse shape analysis with liquid scintillators or phoswich detectors. Upgrading the existing XIA Pixie-4 spectrometer design with a 12-bit, 500 MHz analog to digital converter, we built a prototype of a 4-channel electronics module and evaluated its performance in terms of energy resolution, timing resolution, and improvements in pulse shape analysis.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...