Comparison of Phoswich and ARSA-type Detectors for Radioxenon Measurements

The monitoring of atmospheric radioxenon to ensure compliance with the Comprehensive Nuclear Test Ban Treaty (CTBT) has driven the development of improved detectors for measuring xenon, including the development of a phoswich detector. This detector uses only one PMT to detect β–γ coincidence, thus greatly reducing the bulk and electronics of the detector in comparison to the ARSA-type detector. In this experiment, 135Xe was produced through neutron activation and a phoswich detector was used to attain spectra from the gas. These results were compared to similar results from an ARSA-type β–γ coincidence spectrum. The spectral characteristics and resolution were compared for the coincidence and beta spectra. Using these metrics, the overall performance of the phoswich detector for β–γ coincidence of radioxenon was evaluated.
Related Articles
Network Time Synchronization of the Readout Electronics for a New Radioactive Gas Detection System
In systems with multiple radiation detectors, time synchronization of the data collected from different detectors is essential to reconstruct multidetector events such as scattering and coincidences. In cases where the number of detectors exceeds the readout channels...
Electronics Upgrades to the Green Is Clean Phoswich Detector Systems and Programmatic Implementation at LANL – Phase II Completion – 18403
Los Alamos National Laboratory (LANL) radiological facilities produce low-density room trash that, in many cases, is not contaminated with radioactivity. It has been estimated that 50 to 90% of low-density room trash is free of radioactive contamination and eligible...
New Algorithms for Improved Digital Pulse Arrival Timing With Sub-GSps ADCs
The ability to measure pulse times of arrival with resolutions at or below 100 ps is becoming increasingly desirable in various fields, typically for signals originating from photon detectors such as photomultiplier tubes (PMTs) or silicon photo-multipliers. Achieving...